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Extreme Mass-Ratio Inspirals (EMRIs)

e Typical systems :

- white dwarfs, neutron stars, and
stellar-mass black holes (0.6-50 oz
Msun) onto 10°—5x%x10° Msun super-
massive Black Holes.

* Large parameter space

- ~14 parameters, 7 intrinsic
- Spin S, and eccentricity are important

M, u X
. Fig. from Barack & Cutler 2004
(S, ), e, percentery  initial phase ¢,



Extreme Mass-Ratio Inspirals (EMRIs)

* Event rate is high
- Estimated number of EMRI events is high
(Gair, L. 2004; LIST Report, Barack L. et al.)

- The event rate can be ~1000 in 3-5 years within
~ 3.5 Gpc for 10+ 10° Msun systems.

- Problem with identifying events

e galactic WD-WD binary and possibly EMRI
background




EMRIs: data analysis perspective

* rms SNR at each frequency is small

- Typically <0.1
—1 2/3 2/3
h~6x102 1 M Ho_J
Gpel [10°Ms| 10M _ 5mHz

 Detections based on simple Fourier transform
are generally not possible




EMRIs: data analysis aspect

* Merging frequency scaled inversely with mass

4.4
o~ mHz

Y MI0° M,

e Large number of frequency bins

5 _ _
NfoM/diSXIO (forT=3yr, f =5mHz)
SNR(d~1Gpc)~100



Extreme Mass-Ratio Inspirals (EMRIs)

(signal-to-noise ratio)2 (arbitary unit)
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Orbits are typically

e=04 Snapshot at 1 eccentriC

=05 f0=0.94 mHz :
‘ - e ~0.1-0.7, signal power

spreads into many
harmonics

- At e>0.1, especially at
low-f, SNRs at higher
harmonics become
Important due to noise
response




Extreme Mass-Ratio Inspirals (EMRIs)

e Complicated waveform

- Three Characteristic frequencies

- radial frequency
- GR periastron precession
- orbital plane precession from S-L coupling

- Modulation from LISA’s orbital motion
e Amplitude

* Frequency
(Cutler 98, Barack & Cutler 2004)




EMRIs: Computational Challenge

 Fully coherent detection is impossible

- Waveform can eventually be calculated
- Optimal: best in MLR/SNR
- Impossible computational cost

e ~ 10"=10" templates needed for fully coherent
search of 3 year of data

e ~ 10" templates/yr possible for 50 Tflop computer
cluster ....

(Cutler’'s talk, Gair, L. et al 2004, LIST Report)




EMRIs: Alternative Method

e Semi-coherent method

- Search segments of data |
coherently but add incoherently

e Search for 10" templates coherentl

2wk coherent search for 3 yr data
* Use all available computer power
* Then add powers along ~1e5 tracks

* SNR required increased by a factor of ~2 from
full coherent one at FAP~ 0.01

(Cutler’s talk. Gair et al. 2004)



EMRIs: Time-Frequency Methods

e Incoherent method

- No templates

- Search for maximum power density in t-f
plane

e Windowed FFT for every two weeks’ data

* For each point in t-f plane, given a rectangular box,
calculate total power weighted by noise

. 2, 2
P(i,k)=2 o,
a=i+nl2 b=k+1/2
p(l ’ k)zzazi—n/z Zb:k—l/z P(l ’ k)

<pli,k)>=p, +4m
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EMRIs: Time-Frequency Methods

 Robust/popular
- Signal increases by a factor ~N, noise by sqgrt(N)

- widely used in X-ray astronomy

* e.g., search for kilo-hertz QPOs in LMXBs

- Density mapping method is the same as in
cosmological N-body simulation to pick out
clusters

- In LIGO data analysis, it is called “excess power
method

- Simple and fast
e run-time~ minutes, Matlab code: tens of lines

144



Simulated Waveforms

e Kludge Waveform

* Solve exact Kerr geodesic equations
PN formula to evolve conservative quantities
* Quadrupole GW waveform

e Convolved with LISA orbital amplitude and
Doppler modulation

e Glampedakis, Hughes, Kennefick (2002)
Gair et al (2005)



llustration of a bright 10+1e6 Msun EMRI in t-f
plane (at 250 Mpc)
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EMRIs: Time-Frequency Methods
(typical case at 0.5, and 1 Gpc)

Probabiity Density Ditnbution

P rabability Density Distibuan

M=1e6+10, e0=0.4, a=0.8




EMRIs: Time-Frequency Methods
(typical case at 1.4, 2 Gpc)

f{Hz}

P roba bty Density Distribution

R

Frobe bilty Density Distribution

15
tiwrl

M=1e6+10, e0=0.4, a=0.8




Monte-Carlo Results:
Detection Rate vs False Alarm Probability
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At d=2 Gpc, FAP =0.01, detection rate ~ 60%



EMRIs: Time-Frequency Methods

 Typical case, reach 2 Gpc for FAP=0.01

* Detection baséd on power density from ~2
wks’ data, ~0.2 mHz frequency band

(Wen & Gair 2005)

* Monte-Carlo simulation performed for 26
possible systems (different M, m, S, e0, i,
theta_ s, phi_s, theta k, phi k)

- Detected to 1-3 Gpc, smaller f dot is better
(Gair & Wen 2005)
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EMRIs: Time-Frequency Methods
Comparison to (semi) coherent Method

Required SNR at the same FAP 1/4 1/2

p.~(m)
p(FAP~1%)~15
Best case: m=1, signal concentrates in one t-f bin

- e.g., sinusoidal signals/WD-WD inspirals
Worst case, sighal spreaded into all bins
Performance is source dependent

- Semi-coherent method searches

e ~ 1lel5 templates -> larger FAP
- T-f method is incoherent

- but much smaller numbers of searches




Improvement on Detection

e So far detections are based on max. of one blob

-Works very well
* Detection EMRIs up to 1-3 Gpc

 Improving t-f method

- Important to find the track

e summing all powers on track
- Worthwhile to search through directions

e Take care of some confusion sources
- Including known info of waveform




WD-WD Confusion Problem

 Can always apply other technique
to remove binaries

Power Density SNR

- e.g., g-clean, Radon transform, MCMC

- 1150

e Information extracted from t-f
method:

r 1100

- Frequency/time spread

50

- Directional information
- T-f Track -> <f(t)>

e curved track vs straight ones tiy
- Power-> <dE(t)/dt>




1. Zoom-in with different t-f boxsizes

* Calculate power density with different boxsizes

 For different types of signal, max SNR most likely occurs
at different boxsizes = camera zoom-in

Nf=2 Nf=10000 df=8e-7 Hz

% 10'3 Power Density SNR

Power Density SNR
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2. Decoding Directional Information
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 Detections sensitivity can be
ranked by (s1, s2)

- Red region are more
sensitive to GW signals

- powers from these
“designated” area should

be added with priority
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O-th order approximation(Cutler



Decoding directional information

Realistic LISA configuration encodes more
directional information

At higher f, it is equivalent to 3 detector-
network

high power at each source direction

corresponding low power in null-stream of
that direction (high f)




For one source direction

SNR1+SNR2
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See Archana Pai’'s Poster F=25 mHz



* Src from different direction has its own bright
“blob” and dim spot in null-stream all sky map

* Brighter ones are selected first
e Worthwhile to search over directions



Considerations on Parameter Estimation

 t-f method provided data points
track-> f (t.), powers->dE/dt(t,) (i=1,N) (averaged)
 Also provide information on time-frequency spread
of powers, harmonics/beats

e 2N data
e Assuming we know the relations between fn
* |In case of PN formula, need to fit N+Nc parameters

- In principle, just least-square fit parameters if
N>Nc above threshold

- Nc~7 e(ti), (i=1,N),M,u,ScosA,n,...,
 For multi-EMRIs: also least-square fit



Conclusion

* Time-frequency method works pretty well
- As the 1* step of the hierarchical search

 Current implementation can be further
improved in detection/confusion problem

- By finding the tracks
* e.g., Hough transform
- By search over source directions
* Parameters can be estimated/constrained

* Need information that represent dominating f, and
dE/dt in an averaged sense,



LISA’s Directional Sensitivity

Two orthogonal signal components

-for a given sky direction

SNRzz(A%m%):szh +s2h
where, hl = (h, h,) “(h , h) viv=I
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See also Rajesh et al (2003) (¢ =60°,0 =57°(Ecliptic))



